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SUMMARY

A simplified stochastic model is proposed for crack initiation and
short-crack growth under creep and creep-fatigue conditions. Material inhomo-
geneity provides the random nature of crack initiation and early growth. In
the model, the influence of microstructure is introduced by the variability of
(1) damage accumulation along grain boundaries, (2) critical damage required
for crack initiation or growth, and (3) the grain-boundary length. The proba-
bilities of crack initiation and growth are derived by using convolution inte-
grals. The model is calibrated and used to predict the crack density and
crack-growth rate of short cracks of 304 stainless steel under creep and creep-
fatigue conditions. The mean-crack initiation lives are predicted to be within
an average deviation of about 10 percent from the experimental results. The
predicted cumulative distributions of crack-growth rate follow the experimental
data closely. The applicability of the simplified stochastic model is dis-
cussed and the future research direction is outlined.

INTRODUCTION

Life prediction is an important parameter in evaluating the safety and
reliability of structural components for high-temperature applications such as
rocket engines, gas turbines, and nuclear powerplants. Crack initiation and
early growth constitute most of the life of components, especially under creep
and creep-fatigue conditions. Experimental observations (Ohtani et al., 1983,
1986, 1987) have shown large fluctuations in the crack initiations and growth
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rates of short cracks. These fluctuations are caused by th2 randomness in the
grain size, the local stress, and the resistance to local fiilure. Few analy-
ses have been conducted of the stochastic nature of the grosth of microstruc-
turally short cracks. However, a considerably larger number of investigations
(Kozin and Bogdanoff, 1981; Virkler et al., 1979; Lin and Yang, 1983; Ishikawa
et al., 1987; Spencer and Tang, 1988) have been carried out for long-crack
problems. Long cracks usually show smaller fluctuations in the crack-growth
rates than short cracks. The two approaches taken for short cracks thus far
are based either on Monte Carlo simulations (Kitamura and Ohtani, 1987, 1988)
or on the randomization of empirical crack-growth equations (Cox and Morris,
1987). The approach taken here is based on the damage accumulation along grain
boundaries and the ¢ritical damage required for failure under creep and creep-
fatigue conditions.! The fluctuation of the crack-growth rate is formulated
with the fundamental reliability analysis (Thoft-Christensen and Baker, 1982),
which is based on the variability of the damage accumulation and the critical
damage of the grain boundaries. The model is calibrated and is then used to
predict the crack initiation and early growth rate of short cracks under creep
and creep-fatigue conditions.

STOCHASTIC MODEL FOR CRACK INITIATION AND GROWTH

For many polycrystalline alloys under creep or creep-fatigue conditions,
cracks initiate and grow along preferential grain boundaries. This localiza-
tion of the cracking sites is due to the operative high-temperature failure
mechanisms. Growth and coalescence of cavities and grain-boundary sliding are
examples of local failure mechanisms leading to grain-boundary cracking (Garo-
falo, 1965). The time required for the initiation of a crack differs between
seemingly identical grain boundaries because of creep resistance and geometric
differences. The crack-growth rate is also dependent on such things as the
grain-boundary orientation with respect to the loading axis, the distance
between triple points, and the distribution of the precipitates and ledges on
the boundaries. The highly random crack initiation and growth processes are
created by the presence of microstructural inhomogeneities. The local loading
conditions along grain boundaries are also random because of creep deformation
anisotropy, grain shape, and constraints. A simplified stochastic model is
proposed for predicting the probability of crack initiation and growth under
creep and creep-fatigue conditions. This model takes into consideration mate-
rial inhomogeneities, microstructure geometric variations, and local loading
randomness.

The assumptions included in the model are that (1) cracks grow only along
grain boundaries, (2) crack length is measured as the projected length on a
plane perpendicular to the loading axis, (3) projected grain-boundary length
between adjacent triple points d 1is a random variable with density function
f(d), and (4), the width of the crack is ignored. The two-dimensional model
can be modified, if necessary, to a three-dimensional model by converting the

1The term "creep fatique", as used here, implies a reversed cyclic creep
deformation at high temperature under which creep dominates the failure proc-
ess. A discussion of synergistic creep-fatigue interaction is beyond the scope
of this report.



crack length into crack area. It is also assumed that crack initiation and
growth occur in a discrete manner, increasing in segments that are equal to
the distance d between two triple points after a certain time t (fig. 1).
It has been observed experimentally that grain-boundary triple points act as
crack arresters (Ohtani et al., 1984). Therefore, crack growth is usually
halted at triple points or grain-boundary kinks (sharp bends) until enough
damage is accumulated in the adjacent grain boundary for the crack to extend
again. It is postulated that crack initiation and growth occur when the accu-
mulated damage ¢ equals a critical value ¢c. The critical damage ¢, can
be interpreted as the resistance of a particular grain boundary to cracking,
which is a random variable. The density function of the critical damage ¢
is given by g(¢c). The damage accumulation ¢ is the local driving failure
parameter for a particular grain boundary. The critical damage ¢ 1is inde-
pendent of the applied stress but ¢ 1is strongly related to it. The damage
accumulation ¢ 1is the integral of the damage accumulation rate ¢:

t
¢=Jd>dt (1)
0

The damage rate ¢ 1is a random variable that is a function of the local
stress o). The local stress state o7 1is a function of the constant global
applied stress oq and the crack length 2. Assuming a steady-state failure
process, the damage accumulation rate is taken to be independent of time.

¢ = ot (2)

The density function k of ¢ is related to the density function of b,
h(¢|cg,Q) by

k(dlog, ) = 1/t + h(p|og,2) (3)

If the grain boundary under consideration is adjacent to a crack, the failure
is called crack growth. If the grain boundary is isolated from other cracked
regions, the failure is called crack initiation.

This model is applicable, but not Timited, to monotonic creep conditions.
It can also be applied to time-dependent fatigue (i.e., creep-dominant
fatique). As an example, under a slow-fast fatigue loading (fig. 2) of 304
stainless steel at 973 K in vacuum, irreversible grain-boundary sliding was
observed. This was due to the creep deformation in the tensile half of the
cycle (Taira et al., 1978). Under those conditions, the intergranular crack
initiation is associated with creep damage accumulation in the tensile half of
the cycle. Thus, the time should be converted into the number of cycles and
the local stress o7 should be interpreted as an equivalent stress of the ten-
sile half of the loading cycle.

This damage accumulation formulation is expressed in mathematical terms
only. Physical explanation of the damage equation is discussed next. If one
considers that the damage is associated with cavity growth, the damage function
¢ can be written in terms of the number and the radii of the cavities
observed on a particular grain boundary. The damage function ¢ can be formu-
lated as the ratio of the summation of cavity length over the grain-boundary
length. Experimental observations have shown that the summation of the length



of grain-boundary cavities is proportional to time (Yang, 1984). Hence, a
physical meaning is given to the steady-state damage accumulation of
equation (2). More sophisticated damage equations can, of course, replace
equation (2), which can be written in terms of cavity initiation and growth
Taws.

PROBABILITY OF CRACK INITIATION AND GROWTH
Crack Initiation

As seen previously, failure on a specific grain boundary occurs when the
damage accumulation exceeds a critical damage level. Let us now define a new
variable ¢y, known as the failure function, as the difference between ¢,
and ¢:

¢m = éc - ¢ (4

The failure criterion is simply reduced to ¢5 = 0. Consequently, the proba-
bility of a crack initiating at a particular grain boundary Pge(t) 1is the
probability that ¢y is less than or equal to zero:

Pe(t) = Plop < O (5)

The density function of the new random variable ¢y is given by mg(dplt, cg)
for a given time t and global stress og. The density function mgy is
related to the density functions of the two independent random variables ¢
and ¢, by the following convolution integral:

My(pltiog) = J 9oy + ) keolt.o, 8 = 0 o (6)
0
Knowing that ¢ = ét, then
Moyl tiog) = J 9y + 4 hGlog, = 0) db 7
0

If the density functions of ¢c and ¢ are known, then the probability Pg(t)
for crack initiation at one particular grain boundary before time t for a
given global stress og is given by

0

Pf(t) = P(¢m <0 = [ mo(¢m|t,og) d¢m (8

-

A polycrystalline material has many grain boundaries, which are potential
crack initiation sites. The probability that n number of cracks initiated
in time t for a total number of potential crack initiation sites N is
given by the following binomial distribution:



n N-n
N! [Pf(t)] 1 - Pf(t)]

(N -n'! n! 9

P =
1':n

The expected value or mean number of crack initiations in a given time t and
its variance are given respectively by

E(n) = N Pf(t) : ao

and

VAR = EC[n - E(1%) = N Pe(t) [1 = Po(t)] an

Crack Growth

The criterion for crack growth in terms of accumulated damage is similar
to that for crack initiation. The crack-growth criterion still corresponds to
the damage accumulation ¢ reaching a critical value, ¢.; however, the damage
accumulation rate is accelerated by the presence of a crack. The failure func-
tion ¢y of equation (4) for the grain boundary i immediately adjacent to
the crack tip is redefined for crack growth as

om = 6c - $i(2,09)t (12)

where ¢3(2,0q) is the damage accumulation rate at grain boundary i, and t

is the time e?apsed after the crack reaches the particular grain boundary 1.
Since crack growth occurs when ¢y = O, the time interval t3 required for the
crack to travel the entire grain boundary i is given by

ti = oc/dj (3
The density function of the time tj in terms of the density functions g(¢c)
and h(4$j) can be shown to be

s(t;]op,0) = J by 9Chitylog) hebylog,0) dé, (18)
0

The crack-growth rate of a short crack is then given by
de/dt = dj/t; 15

where dj is the projected distance between two triple points of grain bound-
ary i. The density function of the crack-growth rate in terms of the density
functions s(tj) and f(dj) of t; and dj, respectively, is given by

Pg(dQ/dt|og,Q) = J ti f(de/dt - ti) S(tilog,Q) dti _ 16)
0




The damage accumulated before the grain boundary 1 becomes adjacent to the
crack tip is assumed negligible because it was shown experimentally that pre
damage of stainless steel specimens has 1ittle effect on crack growth under
creep and creep-fatigue conditions (Ohtani and Kitamura, 1986). A formulation
that takes into consideration the predamage effect is described in the
appendix.

Normalization

As seen previously, the damage accumulation rate ¢ is a function of the
local stress o), which depends on the applied global stress o5 and crack
length Q. For simplicity, the following relation can be assumed:

o] = K(u|®)og an

where K(u|2) is a stress concentration factor function of the crack length &
and microstructural randomness u. Under creep conditions, the damage accumu-
lation rate can be taken to be a power function of the local stress

b = Ao? (18
where A and o« are assumed to be material constants. Assuming a steady-
state damage rate, the damage accumulation is then given as a function of the
global stress and K(u|2) by substituting equations (17) and (18) in

equation (2):

6 = of (20)
where & = A Ku|)e
t=o%
% (21)

Here, ¢ s a random variable because K(u|%) is a random variable, but T is
a deterministic variable. The density function h of the normalized damage
accumulation rate is related to h of ¢ by

() = c; h(é) (22)

The probability of the crack initiation can be rewritten in terms of the nor-
malized variables as

0
= a
Pf(f) = J mo<¢m|f) d¢m = chf (23)
where
ﬁo(¢m|f) = J g(¢m + éf) E($|Q = 0) d$ 24
0



The density function of the crack-growth rate in terms of the normalized time
interval ¥j = ogtj can be shown to be equal to

(]

Pg(dQ/deQ) = J t, fade/dt « B st o) dt, (25)
0

< a
S(fi|Q) = 9 S(tilcg,Q) (26)

Therefore, the actual density function is related to the normalized density
function by

P (de/ 2) = (1/c ) P /dT|e Qn
q d dtlog, ) = (1 cg) g(dQ dt|e)

It should be noted that Ef and Eg are independent of o4. The terms Pf
and Pg are easily calculated for any arbitrarily applied global stress og
by equations (23) and (27), respectively.

APPLICABILITY OF STOCHASTIC MODEL

_ Few experiments have been carried out to determine crack initiation and
growth of short cracks at high temperature. Because of the small data base
available, only the applicability of the stochastic model is discussed. This
model is applied to two different data sets for which experimental data are
available. Both experiments were carried out on smooth specimens of 304 stain-
less steel with an average grain diameter of 40 um. The cracks initiated and
grew on the specimen surface. In the first experiment (Ohtani et al., 1983),
the number of crack initiations was monitored under monotonic creep at 923 K
in air at applied stress levels of 98.1 MPa and 147.1 MPa. In the second
experiment, crack initiation and growth were measured under slow-fast fatigue
(Ohtani et al., 1986). The total strain range was equal to 1 percent and the
strain rates in tension and compression were 10-3 percent/s and 1 percent/s,
respectively, at 923 K in vacuum.

~ For the model calibration, the density functions of the damage rate
h(¢|og,Q) and of the critical damage g(¢c) should be determined from actual
experimental data. However, standard density functions are assumed in this
study because of the limited data available. Since ¢ and ¢ are positive
variables, the two-parameter Weibull and logarithmic normal distributions are
adopted here for ¢. and ¢, respectively, and are given below for
completeness:

B
o
Bl c b
b \b e (28)

9(¢.) =



| “1né
nGlog.0) = —— e (29)

N %1né?

where B and b are material constants, mg is the mean value of b,

and ojpé 15 the standard deviation of the 1In ¢. The normalized function

of the damage accumulation rate h(4|2) and the density function of the damage
accumulation k(¢|cg,t,Q), which are derived from equation (29), are given by

(30

]

k(9log.t,0) = (31)

V7 o

1n4'>¢

where my 1is the mean value of 6.

The exponent «, in equation (23), is given by (y + 1) where y 1is the
creep exponent of the material. The choice of o to be equal to (y + 1) is
based on the assumption that the damage accumulation is proportional to the
local strain energy density rate Uweoy, which is proportional to o](Y + 1
for a power-law creep material. The creep exponent y of 304 stainless steel
is equal to 7 under monotonic creep conditions at 923 K in air (Kitamura and
Ohtani, 1988).

Crack Initiation

The constants in the density functions of the critical damage and the
damage rate are calibrated with actual experimental data under monotonic creep
at 98.1 MPa. The constants are adjusted for the theoretical expected value of
the number of crack initiation sites E(n) to fit the actual data (Ohtani
et al., 1983). The total number of potential crack initiation sites N is
approximately equal to 900 sites/mm2 for this material. The constants obtained
from the calibration are listed in table I. The expected value of the crack
initiation sites is plotted versus time and compared with the experimental
results (fig. 3(a)). The rate of change of the expected value E(n) increases
with increasing time. Also shown is the scatter band of the mean value, plus
and minus one standard deviation. The calibration fits the data well in view
of the restriction of the assumed density functions for ¢ and ¢.



As a check to the validity of the calibration, the expected value of the
number of cracks in‘tiated is calculated for a different stress level and then
compared with experimental data. Figure 3(b) shows the predicted results under
creep conditions at an applied stress level of 147.1 MPa. The experimental
results are shown to be within one standard deviation and are always lower than
the predicted mean value E(n). The stochastic model predicts the mean-crack
initiation lives to be within an average deviation of about 10 percent.

Short-Crack Growth

The stochastic model for early crack growth is applied to 304 stainless
steel under creep-fatigue condition at 923 K (Ohtani et al., 1986). The con-
stants B and b of g(¢c) are assumed to have the same values as in the pre-
vious crack initiation study under creep condition because the variability of
the critical damage is only material dependent. The acceleration of the damage
accumulation rate h(4), caused by the presence of a crack, is taken to be a
simple linear variation of the mean with crack length 2 as given by

mp =Co+Cy 2 (32)

The. standard deviation S1nd is assumed to be independent of o for simplicity.
The constant Cp corresponds to the mean value of ¢ for & = 0, which can

be determined easily from crack initiation data as described in the preceding
section. The constant Cy s calibrated by using long crack-growth rate data
of notched specimens with crack length greater than 1 mm. Note that Cy s
calibrated by using long-crack notched specimens that are different from the
smooth, short-crack specimens. The calibrated constants Cp and C; are

listed in table II. The distribution of the grain-boundary length f(d) is
calculated by assuming a normal distribution with an average grain length of
0.02 mm and a standard deviation of 0.005 mm.

The sensitivity of the damage accumulation prior to the dominant crack's
reaching a particular grain boundary is investigated first with the formuiation
given in the appendix. The values of the constants Cy and Cp wused in this
study are listed in table II. The analysis reveals the probability that the
crack-growth rate de/dt 1is insensitive to the predamage time to for
2 > 0.03 mm. When the crack reaches the grain boundary under consideration,
the damage accumulation due to stress concentration is accelerated to a much
faster rate than the predamage rate. This is due to the large difference
between the values of C; and Cp. These calculations are consistent with
experimental observations (Ohtani and Kitamura, 1986) indicating that, once a
crack appears, the overwhelming damage is localized in the grain boundary imme-
diately adjacent to the crack tip. The predicted cumulative probability dis-
tributions of short crack-growth rates for two different crack lengths of
0.03 mm and 0.06 mm are given in figure 4. The experimental results are shown
for purposes of comparison. For the given density distributions of ¢c and
¢, the stochastic model gives the same range of crack-growth rates as the
experimental data. The predicted distributions show good correlation with the
experimental results for higher crack-growth rates. For lower crack-growth
rates, the small disagreement may be due in part to the difficulty of monitor-
ing extremely slow crack-growth rates. The dependence of the crack-growth rate
on crack lengths is plotted in figure 5. The mean crack-growth rates with the
10 percent and 90 percent confidence lines are shown for crack lengths ranging



Fyam 0.03 mm to 0.2 mm. Also shown are the experimental upper and lower crack-
growth rates cf approximately 50 initially monitored cracks. The predicted
mean value falls between the upper and lower values of the experimental crack-
growth rates. The predicted 90 percent and 10 percent confidence lines follow
closely the experimental upper and lower limits, respectively.

SUMMARY OF RESULTS

A simplified stochastic model! was proposed to predict the distribution of
the initiation of cracks and their early growth under creep and creep-fatigue
conditions. The model was formulated by using concepts of damage accumulation
and critical damage required for grain-boundary failure. The density functions
of the damage rate and the critical damage were assumed to have standard forms
(log-normal and Weibull distributions, respectively). The mean and the vari-
ance were calibrated by comparing the predicted results with experimental data.
Damage history and the presence of a dominant crack were introduced in a sim-
ple form that influenced the mean of the damage accumulation rate. The stan-
dard deviation of the damage rate was assumed constant in this study. The
model predicted mean-crack initiation lives at different stress levels within
an average deviation of about 10 percent. The cumulative distributions of the
crack-growth rates under creep-fatigue conditions for different crack lengths
followed closely the variability of the experimental data.

Although the proposed model gave good predictions, there is a need for
model improvements and sensitivity studies of the damage distributions and
their dependence on crack length and predamage. The damage accumulation should
be formulated from a micromechanics, or cavity growth, law. The crack-growth
behavior was oversimplified by allowing for only one dominant propagating
crack. Multiple cracks and crack coalescence, based on the formulation in the
appendix, should be considered. Damage recovery must be accounted for in the
formulation for more complex loading conditions with compressive segments. The
effect of predamage formulation in the appendix must be verified with additional
experiments.

10



APPENDIX - PREDAMAGE EFFECT ON CRACK GROWTH

The failure function ¢ of equation (4) with predamage is now expressed
as

Om = dc - doi - dj(L,09)t (A1)

where ¢i(2,0q) is the damage accumulation rate at boundary i when the crack
is immediately adjacent to that particular boundary, t is the time elapsed
after the crack reaches the particular grain boundary 1, and ¢, 1is the crit-
ical damage needed for the grain-boundary failure. The function ¢qoi 1is the
damage accumulated at that grain boundary prior to becoming adjacent to the
crack tip. In other words, ¢5ij represents the damage state of the grain
boundary prior to its being located adjacent to the main crack. Assuming that
the dominant crack affects only the adjacent grain boundary, the damage doi
can be expressed as a function of the damage accumulation rate:

i-]
Bop = bjlog = 0) ;E% t

(A2)

¢i(°g’Q =0 to

where t3 is the time interval for the crack to travel the entire length of
grain boundary j. Summation of tj is equal to the total time to, elapsed
before the crack reaches the grain %oundary i. The density q(¢¢) of

(doi + ¢it) is given by:

(o]

- ¢, - 6.t
a0y log.0,tt) = J hoi( Loy ) L 4, (A3)
0 0 o

where hpj(djloq.2 = 0), ¢i(oq,2)) is the joint probability density of
$jlog,2 = O ang ¢1(o 2). ?he density function m(¢p) of the failure
funcglon is therefore ngen by

m(¢m|cg,ﬁ,t,to) = J g(¢m + ¢t) q(¢t|og,Q,t,to) d¢t (A4)
0
The cumulative probability function S(tj|o ,2,tg) of the time interval
required for the crack to travel the entire 1enggh of grain boundary i is
given by
0
S(tilog’Q’to) = J m(¢m,Q,ti,to) d¢m (A5)

-0

The density function of the crack-growth rate do/dt is given by equation (16)
with s(t1|og,Q to) being the derivative of equation (A5). However, a special



conctraint must be placed on the function s(tj). It is assumed that no crack
growth occurs on a particular grain boundary unless that boundary is immedi-
ately adjacent to the main crack. Therefore, s(tj) for tj < O must be zero.
The following two requirements are needed to satisfy the positive constraint

on s(tj)

N
the crack

(2)
acts as a
boundary,

Case
gle crack
cence for

for tj = O:

The function ¢gj does not exceed ¢ at grain boundary i before
reaches that grain boundary.

If ¢oi 15 greater than ¢, at grain boundary i, the boundary
potential crack. The main crack instantaneously jumps to the next
i + 1, when it reaches grain boundary i.

(1) is consistent with the assumption shown in figure 6(a) for a sin-
growth. Case (2) gives future directions for handling crack coales-
multiple crack growth (fig. 6(b)). The procedure for adjusting

s(tj) to be always positive for case (1) is similar to the adjustment of the
density function of strength after proof-testing (Brent-Hall, 1988). The
adjusted function, shown schematically in figure 7(a), is given by

2
0 t1 <0
s (tylog, 8.ty = ﬁ (A6)
s(ti)
T- St = 0 t;y >0
g

For case (2), the negative part of tj is lumped in a delta function at
0+ with a magnitude equal to S(tj). The adjusted density function is then

given by

-

HCHERRN = { (A7)

s(t) + §0")
.

S(t1 =0 ti >0

This relation is illustrated in figure 7(b). The density functions P4, for
cases (1) and (2), are schematically drawn in figure 8. For both cases, the
crack growth accelerates as the historical time ty increases. The infinite
crack-growth rate, d¢/dt = « (fig. 8(b)), corresponds to the coalescence of the
main crack with a potential crack. Crack coalescence is an important phenome-
non that can shorten creep 1ife drastically. However, the exact solution is
beyond the scope of this report because a multiple crack-growth model is

required.

12
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TABLE I. - CALIBRATED CONSTANTS FOR DISTRIBUTIONS OF 4., ¢, AND ¢
FOR CRACK INITIATION ANALYSIS FOR MONOTONIC CREEP OF
304 STAINLESS STEEL

Constants for
density function
of critical

Constants for density
function of damage
accumulated (Eq. 29),

Constants for normalized
density function of
damage accumulated

damage (Eq. 28), h($) (Eq. 30),
g(oc) h($)
B =2 o 0 1.0 o = 1.0
b a 10 my'? 3.4x10-4 ny"? 3.9x10-20

(og = 98.1 MPa)

TABLE II.
DISTRIBUTIONS OF ¢. AND

CRACK-GROWTH ANALYSIS U
CREEP-FATIGUE CONDITION
304 STAINLESS STEEL

-~ CALIBRATED CONSTANTS FOR

& FOR
NDER
S OF

Constants for Constants for density
density function function of damage
of critical accumulated for crack
damage (Eq. 28), | growth as a function
g(de) of crack length 2
(Eq. 29),
h(¢|og,e)
=2 m'|n¢'—‘CO+C]Q
= 10 Cp = 0.008
€y =1.08
g = 1.0




(3) PROJECTED GRAIN-BOUNDARY LENGTH, dj.

(b) CRACK INITIATION.
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(c) CRACK GROWTH.

FIGURE 1., - SCHEMATIC VIEWS OF CRACK INITIATION
AND GROWTH.
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FIGURE 2. - STRAIN VARIATION FOR SLOW-FAST CREEP FATIGUE OF 304
STAINLESS STEEL. éc = STRAIN RATE IN COMPRESSION: €4 = STRAIN

RATE IN TENSION: &; << E.
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FIGURE 3. - CRACK-INITIATED DENSITY IN MONOTONIC CREEP OF 304 STAINLESS STEEL. 923 K IN AIR. E(n) = MEAN NUMBER OF INITIATED
CRACKS: G = STANDARD DEVIATION
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(@) CRACK LENGTH, £ = 0.03 mm.
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(b) CRACK LENGTH, £ = 0.06 mm.

FIGURE 4. - CUMULATIVE DENSITY FUNCTIONS OF CRACK-GROWTH RATE OF 304 STAINLESS STEEL FOR TWO CRACK LENGTHS UNDER CREEP-

FATIGUE CONDITION.

923 K IN VACUUM; SLOW-FAST FATIGUE: STRAIN RANGE.

AE. 1 PERCENT.
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FIGURE 5. - COMPARISON OF PREDICTED AND EXPERIMENTAL VARI-
ATION OF CRACK-GROWTH RATE OF 30u4 STAINLESS STEEL AS
FUNCTION OF CRACK LENGTH UNDER CREEP-FATIGUE CONDITION.
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FIGURE 6. - SCHEMATIC VIEWS OF CRACK-GROWTH PROCESS. L‘ < (2< t3.
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FIGURE 7. - DIAGRAMS OF s (t;) AND s’ (t;) DENSITY FUNCTIONS OF TIME INTERVAL t;. THE IMPOSSIBILITY OF CRACK
GROWTH BEFORE ti = 0 IS REPRESENTED BY CORRECTED DENSITY FUNCTION s’.
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FIGURE 8. - DIAGRAM OF DENSITY FUNCTIONS OF CRACK-GROWTH RATE. GLOBAL STRESS. Og- CONSTANT: CRACK LENGTH, £.
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